

European Detect & Avoid (DAA) Next Steps & <u>Retrospect</u>

Live Demo Day @Saab Oct. 05 2022, Linköping, Sweden

Gunnar Frisk, Saab Aeronautics

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Gunnar Frisk | SESAR PJ13 ERICA DAA Demonstration | 2022-10-05

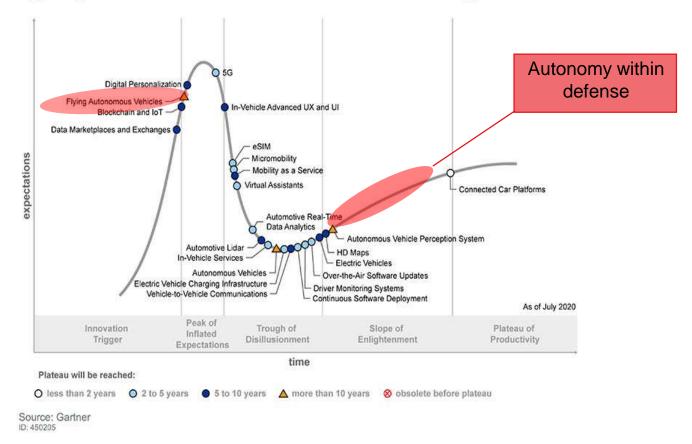
Detect & Avoid (DAA) – The door-opener...

- Key enabler of safe integration of UAS...RPAS...Drones... into non-segregated airspace
- Are we there yet?
 - For military, civil users
 - For large and small...
 - For airspace A-G, U-space/UTM...
- Quick-look on Status of RPAS integration in Europe, DAA development and next steps – SESAR, EUDAAS, Saab, ... - military & civil, small & large, ...

Safe integration of UAS...RPAS...Drones...

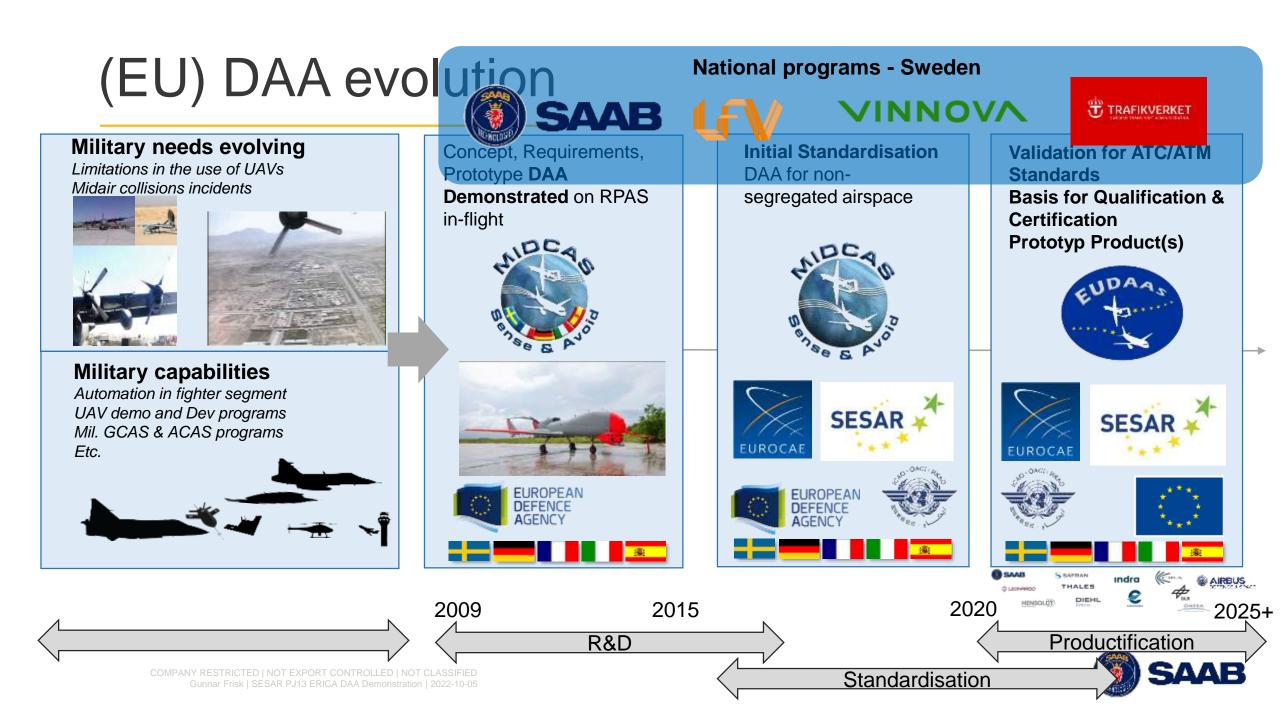
 A priority for Military Users seeking more flexible and safe use of their assets in non-segregated airspace (A-G) – 20 years ago (and still)

- Now a European priority for All Users Civil & Military, Large & Small – RPAS, UAS, Drones in airspace A-G and Uspace/UTM
- Detect & Avoid is the key enabler



Gartner Hype Cycle


Figure 1. Hype Cycle for Connected Vehicles and Smart Mobility, 2020


Hype Cycle for Connected Vehicles and Smart Mobility, 2020

Saab Autonomy in Air Domain – Built on experience

Achievements in SESAR PJ13 ERICA project in collaboration with EDF/EDIDP EUDAAS Programme

European DAA

- **Real-Time Simulations** performed with Air Traffic Controllers and Remote pilots
 - Validating DAA operational concept
 - RPA integrated with LFV NARSIM Sturup simulator
- Over 341 million Fast-time simulations performed assessing CA and RWC using Eurocontrol Café/Cremé encounter models
 - Validating DAA performances
- Live trials on Skeldar VTOL equipped with DAA system
- Results are contributing to DAA Standardisation in EUROCAE and ICAO

What is EUDAAS?

EUDAAS - European Detect & Avoid (DAA) System

- Key **capability** for safe integration of RPA/UAV/Drones into the airspace
 - developed on military platforms, use in civil airspace, applicable for dual-use
- An European Defence Funds (EDF) Development collaboration
 Programme
- EUROCAE Standard(s)
- Building on **European investments**
 - EC, EDA, Member states, Industry
 - Military and civil programs (MIDCAS, SESAR etc.)
- Global interoperability and compliance
 - ICAO SARPs, Interop MASPS, ...

9

EUDAAS Program Facts

- Awarded under the EC EDF, EDIDP 2019 call, Development/Capability window. Phase 1:
 - EC funding ~21M€
 - Total budget with national contributions ~30M€ (past investment in MIDCAS ~55M€)
- Supported by 5 MoDs: SWE (lead), GE, FR, IT, SP
- 11 main industrial partners
- Duration: 2021-2024, phase 2 2024~2026 TBC

DIEHL

Defence

CIRA

onera

Indra

SAFRAN

THALES

COMPANY RESTRICTED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Gunnar Frisk | SESAR PJ13 ERICA DAA Demonstration | 2022-10-05

SAAB

🔆 LEONARDO

HENSOLDT)

The EUDAAS Program Target platforms

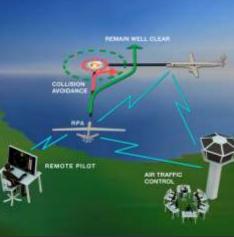
- Tests & Demonstration on:
 - EuroDrone MALE (Dornier 228 testbed)
 - Leonardo Falco Xplorer TUAV/MALE
 - UMS Skeldar VTOL TUAV
 - Safran Patroller TUAV
- Results will benefit and be applicable to many Drones
 - Desired, Required, Developed and Tested for *military* platforms to support and meet *civil* requirements & environments/airspace
 - Open **standards** for EU DAA Systems, published by EUROCAE, strongly supported by EUDAAS
 - Validation of DAA solution in the ATM/ATC system any entrants into A-G (jointly with SESAR PJ13)
 - Baseline for **Certification** (EASA)
 - Re-use into UAM, U-space/UTM...
 - Also relevant for **manned aviation** (e.g. SPO Single Pilot Ops)

11

RPAS integration and DAA at Saab a broad challenge requiring holistic view & broad competences

Saab DAA capabilities 1(2)

- **Pioneer & leader** in the Air Traffic Integration (ATI) domain, Leading the EU DAA work:
 - **Development** in EDF/EDIDP EUDAAS
 - Validation in EUDAAS and SESAR
 - **Standardisation** in EUROCAE WG-105 (and ICAO RPAS Panel)
 - Supporting **regulatory development** (EASA, NSA, Mil)



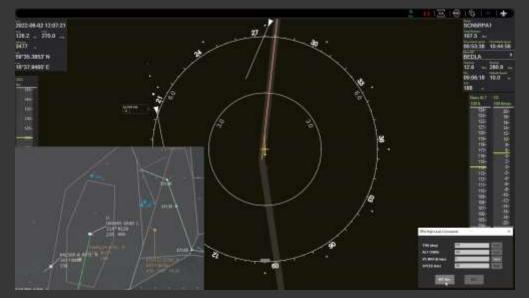
Saab DAA capabilities 2(2)

- Saab Offers
 - DAA equipment and algorithms, sensors, Flight Management computers, C2
 - Adaptability for different UAS & Drones (size, performance, operating environment/airspace), civil & military
 - Flight trials on several (large and small) platforms
 - Also relevant for pilot situation awareness and collision avoidance (special missions, SPO, teaming, ...)
 - Test-beds & -environments (sim FTS & RTS, live)
- **Collaborations** will continue, is required, and we welcome new collaborations

Next steps?

- European Standard
 - EUROCAE WG-105
- European Programs
 - SESAR PJ13 ERICA → SESAR3
 - EDF EUDAAS → EUDAAS2
- Test on more platforms
 - Military...Civil Smaller...Larger Unmanned...Manned ATM...UTM/U-space

- Saab and industry developments
 - Refinements of existing prototypes
 - Product line for different categories of RPAS...UAS...Drones



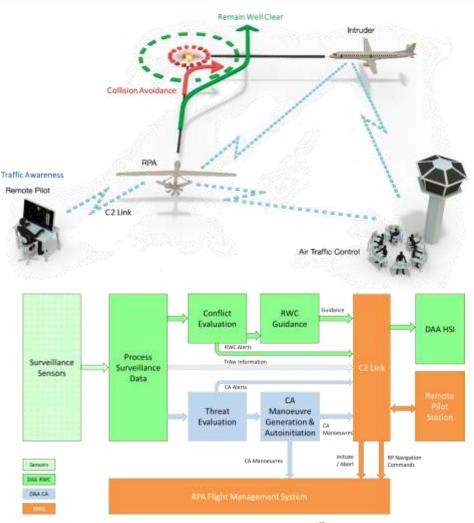
Thank you!

Welcome to our stand!

And thanks' to our partners and sponsors.

Gunnar Frisk, gunnar.frisk@saabgroup.com

What is DAA?

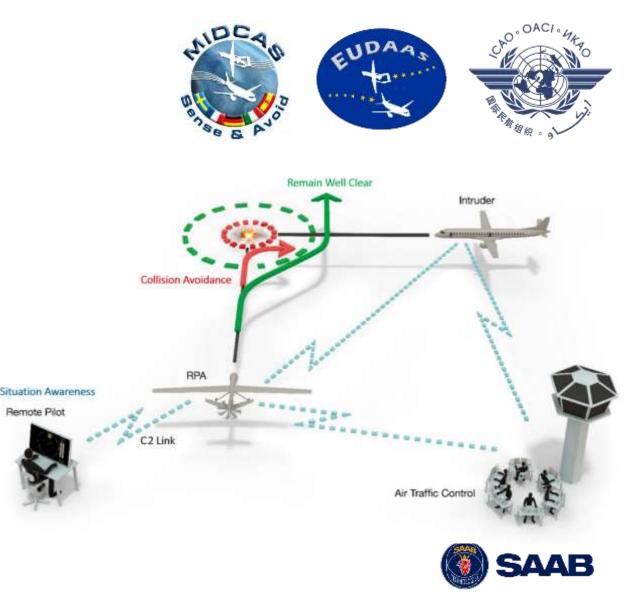

DAA Operational Concept

- Replicating the human ability to "see and avoid" aviation cornerstones "rules of the air"
- Goes beyond current manned aviation, e.g. including fully automatic collision avoidance

DAA is a <u>complex</u> **System**, including:

- Cooperative and non Cooperative Sensors
- Collision Avoidance (CA) function
 - Interoperable with existing CA Systems •
 - Incl. Automatic avoidace
- Remain Well Clear (RWC) function
- Traffic Awareness (TrAw) function Human System Interface (HSI)

→ We address the full scope incl. Interoperability (with safety nets, ACAS/TCAS, other DAA systems)


DAA/EUDAAS Operational Scope

All DAA functions:

Situation Awareness (SA)

• Remain Well Clear (RWC)

- Collision Avoidance (CA)
 - Automatic (in EUDAAS)

EU DAA Roadmap

MIDCAS (R&D)	EUDAAS + SESAR PJ13 (Dev. & Validation)	•	Certification, Industrialisation, Acquisition (e.g. EDF)	
 Test & Demonstration equipment Concept Requirements analysis Initial architecture & design Draft DAA standards (OSED, MASPS) Test installations RPAS flight tests Automatic CA Coop & Non-coop DAA 	 Prototype equipment Representative design for MALE (EuroDrone) & TUAV Finalise DAA standards (OSED, MASPS, MOPS) Sensor MOPSs Regulatory framework ATM/ATC operational validation Initial integration onboard EuroDrone (testbed), TUAS 		 Product MOPS updates (if required) Certification at equipment & platform level (E-TSO etc.) Final integration Industrialisation Acquisition 	
Results: Initial EUROCAE standards DAA system req's & design DAA system TRL5-6	Results: EUROCAE standards System demo'd (TRL6-7), limited DAA op's, Foundation for qualification		Results: System qualified (TRL 8), in operations (TRL 9). Full DAA op's.	

